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Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
Email: jperaud@mit.edu

Nicolas G. Hadjiconstantinou
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
Email: ngh@mit.edu

ABSTRACT

Using an asymptotic solution procedure, we construct solu-
tions of the Boltzmann transport equation in the relaxation-time
approximation in the limit of small Knudsen number, Kn� 1, to
obtain continuum equations and boundary conditions governing
phonon-mediated heat transfer in this limit. Our results show
that, in the bulk, heat transfer is governed by the Fourier law
of heat conduction, as expected. However, this description does
not hold within distances on the order of a few mean free paths
from the boundary; fortunately, this deviation from Fourier be-
havior can be captured by a universal boundary-layer solution
of the Boltzmann equation that depends only on the material
model and the phonon-boundary interaction model (Boltzmann
boundary condition). Boundary conditions for the Fourier de-
scription follow from matching this inner solution to the outer
(Fourier) solution. This procedure shows that the traditional no-
jump boundary conditions are appropriate only to zeroth order in
Kn. Solution to first order in Kn shows that the Fourier law needs
to be complemented by jump boundary conditions with jump co-
efficients that depend on the material model and the phonon-
boundary interaction model. In this work, we calculate these
coefficients and the form of the jump conditions for an adiabatic-
diffuse and a prescribed-temperature boundary in contact with
a constant-relaxation-time material. Extension of this work to
variable relaxation-time models is straightforward and will be
discussed elsewhere. Our results are validated via comparisons
with low-variance deviational Monte Carlo simulations.

INTRODUCTION
The field of phonon transport has recently received consider-

able attention in the context of microscale solid state heat trans-
fer. Transport at the device scale, namely involving lengthscales
larger than 10nm, is of particular interest in many engineering
applications. At these scales, a kinetic-theory approach based
on the Boltzmann transport equation (BTE) [1] is preferable to
atomistic approaches that become computationally intractable.

Over the years, a number of computational methods for solv-
ing the BTE have been developed [2–6]. Unfortunately, when
characteristic lengthscales become much larger than the phonon
mean free path (the limit of small mean free path is approached),
phonon transport becomes collision dominated and Boltzmann-
based descriptions become stiff, adversely affecting the compu-
tational efficiency of numerical solution methods. For example,
time-explicit methods become very expensive, because charac-
teristic timescales become diffusive and thus very long compared
to the timestep required for accurate solution. Moreover, resolu-
tion at the free path scale implies that the number of computa-
tional cells or computational particles required for these simula-
tions becomes very large.

In this paper, we address some of these limitations but also
seek to improve our fundamental understanding of microscale
transport processes by developing an asymptotic method for
solving the Boltzmann equation in the small mean free path limit
Kn≤ 0.1. In this regime, we expect that the classical Fourier de-
scription will provide a good approximation to the solution, with
kinetic effects becoming increasingly important as Kn increases.
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The asymptotic analysis provides a method for rigorously deriv-
ing the modifications required to the Fourier description so that
the latter can continue to provide solutions for continuum fields
that are consistent with the Boltzmann equation and thus can be
used as a means of effectively solving the Boltzmann equation
much more efficiently than direct numerical methods of solution.
Such expansions have been used by Sone and co-workers [7, 8]
to derive the continuum equations and boundary conditions de-
scribing rarefied gas dynamics.

BACKGROUND
We start by recalling the Boltzmann equation for phonon

transport in the relaxation time approximation

∂ f
∂t

+Vg ·∇x′ f =
f loc− f

τ(ω, p,T )
(1)

where f refers to the occupation number of the phonon states,
Vg(ω, p) to the group velocity, ω to the frequency, p to the po-
larization, T to the temperature and f loc to an equilibrium distri-
bution defined by energy conservation considerations (refer for
instance to [4, 9] for details on the definition of f loc).

In this work we consider steady problems. Assuming small
deviations from equilibrium at temperature Teq, the steady-state
Boltzmann equation reads

Vg ·∇x′ f
d =

L( f d)− f d

τ(ω, p,Teq)
(2)

where f d = ( f − f eq), with f eq = [exp(h̄ω/kbTeq)−1]−1, and

L( f d)(ω, p) =

∫
ω,Ω,p

h̄ω f d

τ

D
4π

d2Ωdω

Cτ

d f eq

dT
(3)

In the above expression,

Cτ =
∫

ω,p

Dh̄ω

τ

d f eq

dT
dω (4)

where

d f eq

dT
=

h̄ω

4kbT 2
eq sinh

(
h̄ω

2kbTeq

) . (5)

In the above, Ω and d2Ω respectively refer to the unit vector
defining the direction of propagation of a particle and to the dif-

ferential solid angle, expressed as sin(θ)dθdφ in spherical coor-
dinates. The density of states is given by

D = D(ω, p) =
k(ω, p)2

2π2Vg(ω, p)
(6)

In the interest of compactness, in the above expressions and in
what follows, we use a single integral symbol to denote both
integrals over multiple variables and sum over polarization.

In this study, in the interest of simplicity, we will only
consider the single (constant) mean free path case, denoted by
Λ = Vgτ, where τ = const. and Vg = ||Vg|| = const.. Although
this assumption is usually considered to be very restrictive, ex-
tension to the variable mean free path case can be readily ob-
tained [10]. This is further discussed in the Conclusion section.
The Knudsen number is defined by Kn = Λ/L where L is the
characteristic dimension of the system.

ASYMPTOTIC ANALYSIS
Introducing the dimensionless coordinate x = x′/L as well

as the function

Φ =
f d

d f eq

dT

(7)

and

Ξ(ω, p) =
h̄ωD(ω, p)

4π

d f eq

dT
(8)

we write the Boltzmann equation in the form

Ω ·∇xΦ =
L(Φ)−Φ

Kn
(9)

Using the parameters introduced above and the single mean
free path assumption, the scattering operator can be expressed in
the form

L(Φ) =

∫
ω,Ω,p

Ξ

τ
Φd2Ωdω

Cτ

(10)

It should then be noted that equation (9) is independent of the
frequency ω and polarization p (except in the integral expression
of (10)). As a direct consequence, the function Φ is also inde-
pendent of ω and p, that is, it only depends on Ω and x. The
Boltzmann equation can therefore be written in the form

Ω ·∇xΦ =

∫
Ω

Φ/(4π)d2Ω−Φ

Kn
(11)
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The usual macroscopic quantities of interest such as temper-
ature, energy density and heat flux can be calculated from

Ttot = Teq +
1

4π

∫
Ω

Φd2
Ω = Teq +T (x) (12)

Etot = Eeq +
∫

ω,p
Ξ(ω, p)dω

∫
Ω

Φd2
Ω (13)

J =
∫

ω,p
Ξ(ω, p)Vg(ω, p)dω

∫
Ω

ΦΩd2
Ω (14)

We will refer to T (x) as the deviational temperature, since it rep-
resents deviation from the equilibrium temperature Teq.

Bulk solution
The asymptotic solution relies on a “Hilbert-type” [11] ex-

pansion of the solution Φ of the form

Φ =
∞

∑
n=0

Knn
Φn (15)

Given the nature of the proposed solution, similar expansions can
be written for the temperature and the heat flux fields

T =
∞

∑
n=0

KnnTn (16)

J =
∞

∑
n=0

KnnJn (17)

In this section, we only consider solutions far from any
boundary. As will be shown below, close to the boundary, ki-
netic effects become important due to the incompatibility of the
bulk solution with the kinetic (Boltzmann) boundary condition
and a separate, boundary layer analysis is required.

We denote ΦG = ∑Knn
ΦGn the bulk solution, anticipating

that Φ = ΦG +ΦK , where ΦK is the kinetic boundary layer solu-
tion that is zero in the bulk and will be similarly expanded later.

When the expansion for ΦG is inserted in the Boltzmann
equation we obtain

Ω ·∇x

∞

∑
n=0

Knn+1
ΦGn =

∞

∑
n=0

Knn [L(ΦGn)−ΦGn] (18)

By equating terms of the same order (Kn1 and higher pow-
ers), we obtain the following relationship for all n≥ 0

Ω ·∇xΦGn = L(ΦGn+1)−ΦGn+1. (19)

In addition, considering the two terms of order 0 in the right
hand side of (18), we find that ΦG0 is determined by the solution
of the equation

ΦG0 = L(ΦG0) =

∫
ω,Ω,p

Ξ

τ

d f eq

dT ΦG0d2Ωdω

Cτ

. (20)

From this equation we deduce that ΦG0 is a function that depends
on x only, since this is the case for L(ΦG0). We note here that
any function that only depends on x is a solution. Additionally,
since ΦG0 = ΦG0(x), we find that the zeroth order deviational
bulk temperature is given by

TG0(x) =
1

4π

∫
Ω

ΦG0(x)d2
Ω = ΦG0(x). (21)

At this stage, the spatial dependence of ΦG0 is undeter-
mined. The additional information needed will be inferred from
the application of a solvability condition to ΦG1.

An expression for the order 1 solution can be found using
(19)

ΦG1 = L(ΦG1)−Ω ·∇xΦG0 (22)

A necessary condition for ΦG1 to be the order 1 solution is to be
equal to the sum of−Ω ·∇xΦG0 and a function that only depends
on x. Reciprocally, if we write ΦG1 = Φe1 −Ω ·∇xΦG0 with
Φe1 = Φe1(x), then it follows that ΦG1 is solution of (22). Since
the temperature associated with ΦG1 is exactly Φe1, we can write
ΦG1 = TG1−Ω ·∇xTG0.

Finally, order 2 may be derived following the same proce-
dure. Equation

Ω ·∇xΦG1 = L(ΦG2)−ΦG2 (23)

implies

ΦG2 = L(ΦG2)−Ω ·∇xTG1 +Ω ·∇x (Ω ·∇xTG0) (24)

In the following section, we show that the temperature associated
with ΦG2 is L(ΦG2) = TG2. We will show it by deriving the
governing equation for T0.

Governing equation for the temperature field
The solvability condition required to determine ΦGn is a

statement of energy conservation, namely

∫
ω,p

4π
Ξ

τ
L(Φ)dω =

∫
ω,p,Ω

Ξ

τ
Φdωd2

Ω (25)
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Writing this relationship for each order results in

∫
ω,p

4π
Ξ

τ
L(ΦGn+1)dω =

∫
ω,p,Ω

Ξ

τ
ΦGn+1dωd2

Ω (26)

for any n and implies

∫
ω,p,Ω

ΞVgΩ ·∇xΦGndωd2
Ω = 0 (27)

If we apply this relationship to ΦG1, we then obtain

∫
ω,p,Ω

ΞVgΩ ·∇x (TG1−Ω ·∇xTG0)dωd2
Ω = 0 (28)

which implies

∇
2
xTG0 = 0 (29)

This concludes the proof that the 0-th order temperature field
obeys the steady state heat equation. It can also be shown that
the subsequent order terms similarly obey the heat equation [10].
In other words, for order 1, the highest order considered here, the
temperature field in the bulk, TG1(x), obeys

∇
2
xTG1 = 0 (30)

To this order, the fundamental difference compared to the
macroscopic heat conduction description derived from a contin-
uum point of view, or even Chapman-Enskog type expansions
showing [12] that to first order the heat flux is proportional to
the temperature gradient (and thus the temperature field obeys
the Laplace equation) resides in the boundary conditions. A
more thorough discussion can be found in the Conclusion sec-
tion. Below we consider in detail one type of boundary, namely
a prescribed-temperature boundary.

Boundary conditions associated with prescribed tem-
perature boundaries

The term prescribed temperature boundary is typically used
to describe a boundary approximating a black-body, absorb-
ing incoming phonons and emitting phonons from an equilib-
rium (isotropic) distribution at a given temperature. In other
words, the Boltzmann boundary condition associated with such a
boundary at deviational temperature Tb is a Bose-Einstein (equi-
librium) distribution at the wall temperature, denoted here by

f eq(ω;Teq + Tb). In the linearized case, the incoming distribu-
tion of deviational particles is therefore

fb = Tb
d f eq

dT
(31)

or simply, in terms of quantity Φ defined in (7)

Φb = Tb (32)

Here we assume that the boundary is flat; boundary curva-
ture will be considered in a future publication. Without loss of
generality we assume that the boundary is located at x1 = 0 and
with an inward normal pointing in the positive x1 direction.

We note that ΦG0 is isotropic and is thus able to match Φb
provided we set

TG0 = Tb (33)

at the boundary. Therefore, at order 0, the solution to the
Boltzmann equation with prescribed temperature bound-
aries is given by the heat equation complemented by the usual
Dirichlet boundary conditions and no boundary layer correc-
tion is required (ΦK0 = 0).

This situation changes at order 1. The order 1 distribution
ΦG1 = TG1 −Ω ·∇xTG0 is not isotropic due to the gradient of
TG0. As a consequence, there is a mismatch between the order 1
solution and the boundary condition (which has been satisfied by
ΦG0 and is thus zero for all subsequent orders). This mismatch
can be corrected by introducing a boundary layer term ΦK1.

Let us write the problem that ΦK1 satisfies. First, by linear-
ity, ΦK1 is a solution of the Boltzmann equation with one spatial
dimension. Introducing the stretched coordinate η = x1/Kn, the
Boltzmann equation for ΦK1 becomes

cos(θ)
∂ΦK1

∂η
= L(ΦK1)−ΦK1 (34)

where θ is the polar angle taken with respect to x1. The associ-
ated boundary condition is

ΦK1|η=0 +ΦG1|η=0 = 0, (35)

which translates into the following relation

ΦK1|η=0 =−TG1|η=0 +Ω ·∇xTG0 (36)
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The term ∇xTG0 is known from the order 0 solution. The
term TG1|η=0 is unknown and determined by the fact that there
exists only one value for TG1|η=0 such that ΦK1 tends to 0 for
η→ ∞ [14]. This determination proceeds by decomposing ΦK1
into three components

ΦK1 = ΦK1,1 +ΦK1,2 +ΦK1,3 (37)

where each of ΦK1,i, i = 1,2,3 is the solution to an equation of
the form (34) with the associated boundary condition:

ΦK1,1|η=0 = (−c1 + cos(θ))
∂TG0

∂x1
(38)

ΦK1,2|η=0 = (−c2 + sin(θ)cos(φ))
∂TG0

∂x2
(39)

ΦK1,3|η=0 = (−c3 + sin(θ)sin(φ))
∂TG0

∂x3
(40)

Here x2 and x3 denote cartesian coordinates in the plane of the
boundary, which along with x1 form a right-handed set. The con-
stants c1, c2, c3 are uniquely determined by the condition that
ΦK1,1, ΦK1,2 and ΦK1,3 individually tend to zero for η→ ∞. We
also note that c1 + c2 + c3 = TG1.

Under the above conditions, ΦK1,2 and ΦK1,3 and the asso-
ciated constants c2 and c3 can be found analytically. One can
easily verify that c2 = c3 = 0, with

ΦK1,2 =

{
sin(θ)cos(φ) ∂TG0

∂x2
exp
(
−η

cos(θ)

)
, for cos(θ)> 0

0, for cos(θ)< 0
(41)

and

ΦK1,3 =

{
sin(θ)sin(φ) ∂TG0

∂x3
exp
(
−η

cos(θ)

)
for cos(θ)> 0

0 for cos(θ)< 0
(42)

are solutions to (34) with boundary conditions (39), respectively,
and (40). The temperature field associated with these functions
is zero.

The problem for ΦK1,1 can be solved numerically [10] yield-
ing c1 ≈ 0.7104. The temperature field per unit temperature gra-
dient in the bulk solution associated with ΦK1,1, namely τK1,1 ≡
TK1,1/(∂TG0/∂x1) is plotted in Figure 1. We therefore showed
that the boundary condition for the order 1 bulk temperature field
is

TG1(x1 = 0) = c1
∂TG0

∂x1

∣∣∣∣
x1=0

(43)

0 0.5 1 1.5 2 2.5
0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

T K1
,1

/(
 T

G
0/

 x
1)

Figure 1. Temperature profile associated with τK1,1 ≡
TK1,1/(∂TG0/∂x1).

or more generally

TG1|xb = c1
∂TG0

∂n

∣∣∣∣
xb

(44)

where we use n to denote the wall normal pointing into the ma-
terial and xb the boundary location. In other words, the bound-
ary condition is of the jump type and the associated temperature
jump is proportional to the derivative of the 0th order solution in
the direction normal to the boundary.

The amplitude of the corrective boundary layer that is added
near the wall is also proportional to the normal derivative:

TK1 = τK1,1
∂TG0

∂n

∣∣∣∣
xb

(45)

Note that although a non-zero temperature field is associated
with ΦK1,1, the corresponding heat flux is zero. This is explained
by the fact that ΦK1,1, by construction, tends to 0 at infinity.
Since the boundary layer problem is one-dimensional in space,
by energy conservation, the heat flux has to be constant in x1 and
is therefore zero everywhere.

Boundary conditions for a diffuse adiabatic boundary
The case of diffuse adiabatic boundaries can be treated

through a similar approach where the mismatch between the bulk
asymptotic solution and the boundary condition is analyzed and
corrected. The boundary condition in the single mean free path
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case is [13]

Φ(xb,0≤ θ < π/2) =−1
π

∫
θ>π/2,φ

Φ(xb,θ,φ)Ω ·nd2
Ω (46)

where θ is the angle between Ω and n. A major difference from
the prescribed temperature boundary is that applying this con-
dition to the 0th order bulk solution gives no information, be-
cause ΦG0 satisfies (46) regardless of its value at the wall. The
boundary condition for TG0 is obtained by analyzing the order 1
mismatch. The analysis yields

∂TG0

∂n

∣∣∣∣
xb

= 0, (47)

which is compatible with the Neumann boundary conditions as-
sociated with adiabatic boundaries.

Condition (47) comes with an order 1 boundary layer, which
is the manifestation of the mismatch between the anisotropic bulk
terms and the imposed boundary condition (46). More details can
be found in [10].

VALIDATION
In this section we validate our solution but also take the

opportunity to demonstrate how the asymptotic solution can be
used to construct solutions for the temperature field that are rig-
orously consistent with the Boltzmann equation by considering
a simple 1D problem and comparing our results with precise
Monte Carlo solutions of the Boltzmann equation using a vari-
ant of the method described in [6]. We consider a silicon slab of
thickness L confined between two walls at different prescribed
temperatures. Using dimensionless coordinates, the walls are lo-
cated at x1 = 0 and x1 = 1 and have deviational temperatures TL
and TR, respectively.

We recall that under the asymptotic analysis, the temperature
field is given by

T (x1) = TG0(x1)+KnT1(x1)+O(Kn2) (48)

= TG0(x1)+Kn(TG1(x1)+TK1(x1))+O(Kn2) (49)

The order 0 solution straightforwardly reads

TG0(x1) = TL +(TR−TL)x1 (50)

since it is the solution of the heat conduction equation subject to
no-jump boundary conditions. Therefore, the boundary condi-

tions for the order 1 field are

TG1(x1 = 0) = c1
∂TG0

∂x1
= c1(TR−TL) (51)

TG1(x1 = 1) =−c1
∂TG0

∂x1
= c1(TL−TR) (52)

which results in

TG1(x1) = c1(TR−TL)(1−2x1) (53)

The boundary layer TK1(x1) = (TR − TL)τK1,1(x1) contributes
to the solution near the wall at x1 = 0, while the function
(TL − TR)τK1,1(1− x1) contributes close to the wall at x1 = 1.
The resulting solution correct to order 1 (eq (49)) is plotted in
figure 2 for Kn = 0.1 and compared to our benchmark (adjoint
Monte Carlo [12]) result. The agreement is excellent; we note in
particular that even though the boundary layer correction is small
at this Knudsen number, the temperature jumps are considerable
and are accurately captured by the asymptotic solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

(T
(x

1)
T L)/(

T R
T L)

 

 

order 1 solution
Monte Carlo

Figure 2. Order 1 solution (plain line) compared to the solution com-
puted by highly resolved Monte Carlo simulation at Kn = 0.1.

Note on the treatment of the validation problem to
higher order

If desired, calculation of T (x1) to second order in Kn pro-
ceeds by solving the heat conduction equation for TG2 subject to
the appropriate boundary conditions, which will, in general, in-
volve second derivatives of TG0, as well as first derivatives of
TG1. Although not presented here, these boundary conditions
have been determined for various types of boundaries and will
be presented in a future publication [10].

Here, however, we note that due to the simplicity of the val-
idation problem considered above, the second-order solution can
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be calculated without knowledge of second-order boundary con-
ditions because the second derivative of TG0 is 0. In this case, the
bulk second order solution (eq. (24) ) can be written as

ΦG2 = TG2−Ω1
∂TG1

∂x1
(54)

The analysis previously presented for order 1 can be applied
identically to the second order, starting from

ΦK2|η=0 +ΦG2|η=0 = 0, (55)

and using (54). It yields

TG2(x1 = 0) = c1
∂TG1

∂x1
(x1 = 0) =−2c2

1(TR−TL) (56)

TG2(x1 = 1) =−c1
∂TG1

∂x1
(x1 = 1) = 2c2

1(TR−TL) (57)

with the solution

TG2(x1) =−2c2
1(TR−TL)(1−2x1) (58)

In fact, in this particular case where only first derivatives are non
zero, this process can be repeated for all orders without knowl-
edge of the higher order jump coefficients, leading to an asymp-
totic solution that is, in principle, correct to all orders. In other
words, for n≥ 1:

TGn(x1) = (−2)n−1cn
1(TR−TL)(1−2x1) (59)

Summing all orders (provided 2Knc1 < 1), we obtain:

TG(x1)−TL

TR−TL
= x1 +

Knc1

1+2Knc1
(1−2x1) (60)

The boundary layer corrections of all orders can also be obtained
(and summed) using the same process. For example, for the
boundary at x1 = 0, we obtain

TK(x1)

TR−TL
=

Kn
1+2Knc1

τK1(x1). (61)

The second boundary layer (at x1 = 1) is obtained analogously.
This solution is asymptotically accurate to all orders; for a dis-
cussion on the error associated with the asymptotic expansion
see [14].

Figure 3, compares the order 1, infinite order and “exact”
(Monte Carlo) solution for Kn = 0.5. The infinite order solution
is in very good agreement with the exact solution, while the order
1 solution is clearly inadequate at this Knudsen number.

Note on an alternative form for the jump boundary con-
ditions

In the last section we derived a solution that is “asymptot-
ically accurate to infinite order” by summing all terms in the
power series in Kn under the assumption that it converges. This
solution could also be obtained by directly solving the heat con-
duction equation subject to the boundary condition

TG|xb −Tb = c1Kn
∂TG

∂n

∣∣∣∣
xb

, (62)

a form that is very common in the rarefied gas literature [16].
One can show that this “implicit” form is equivalent to the

staggered prescription derived above (eqs (33) and (44)) to order
Kn. Specifically, expanding

TG|xb = (TG0 +KnTG1 +Kn2TG2 + ...)|xb (63)

and similarly for ∂T/∂n|xb at the boundary location and substi-
tuting into (62), one obtains TG0|xb = Tb to order Kn0 and

TG1|xb
= c1

∂TG0

∂n

∣∣∣∣
xb

(64)

to O(Kn), which are identical to eqs (33) and (44), respectively.
As will be shown in [10], at order Kn2 and higher, additional

terms involving higher derivatives appear in (56) and (57) and
their higher order counterparts, requiring (62) to be modified if
it is to be equivalent to the former to higher order than Kn. It is
only in the special case of the validation problem discussed here,
where all derivatives higher than order 1 are zero and therefore
TGn+1 = c1∂TGn/∂n at the boundary for any n, that (62) yields
results that are correct to all orders.

CONCLUSION
We have presented an asymptotic solution method for solv-

ing the Boltzmann equation in the limit Kn ≤ 1 for steady pro-
lems. The resulting solution provides governing equations and
boundary conditions that determine the continuum temperature
and heat flux fields in arbitrary three-dimensional geometries.
Our results show that the equation governing the temperature
field is the steady heat equation. Although this can be shown by
the usual kinetic theory analysis [1,9] (expanding the distribution
function about the local equilibrium and giving no consideration
to boundaries), the novel contribution of the present work is the
derivation of boundary conditions that complement this equation
so that the resulting solutions of this system are rigorously con-
sistent with solutions of the Boltzmann equation and explain the
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Figure 3. Order 1 solution (dashed line) and ”infinite order” solution
(solid line) compared to the solution computed by a finely resolved Monte
Carlo simulation for Kn = 0.5. At this Knudsen number the boundary
layer contribution is clearly visible (the solution is no longer a straight line).

temperature jumps at the boundaries previously observed and re-
marked upon [15].

The emergence of the heat equation as the governing equa-
tion is a manifestation of the fact that, in the Kn� 1 limit, the
bulk description remains unperturbed and kinetic effects only ap-
pear at the boundaries. Specifically, one can show that, to first
order in Kn, the heat flux in the bulk

JG1 =
1
3

∫
ω,p

ΞV 2
g τdω∇xTG0 (65)

is given by the same constitutive law derived by standard kinetic
theory [1, 9]. Kinetic effects near boundaries can be captured by
solution of the heat equation subject to jump boundary conditions
at order 1 in Kn and higher, as well as the addition of boundary
layer functions to the temperature field and the heat flux.

Additional results [10], not shown here, reveal that the phys-
ical picture described above remains unmodified when the mean
free path depends on the frequency and polarization, with the lat-
ter only affecting the numerical details of the jump coefficients
and boundary layers. In this sense, studying the single mean free
path case is very useful.

Although the agreement of the first-order result at Kn = 0.1
with simulations was excellent, this may have been a result of
the simplicity of the problem considered here. The asymptotic
procedure outlined here can be extended to higher order in Kn to
obtain, in principle, an even more accurate asymptotic descrip-
tion. Studies in rarefied gas dynamics [16] show that second-
order asymptotic formulations are reliable to engineering accu-
racy up to Kn ≈ 0.4 and in some cases beyond. An asymptotic
theory to second order in Kn and extensive investigation of the
limits of its validity will be presented in a future publication [10].
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